MCTP-release/main.c
2024-04-04 21:26:18 +00:00

836 lines
18 KiB
C

/* SPDX-License-Identifier: Apache-2.0 */
/**
* @file mctp.c
*
* @brief Code file for MCTP transport library
*
* @details As per MCTP specification, all MCTP fields are Big Endian
*
* @copyright Copyright (C) 2024 Jackrabbit Founders LLC. All rights reserved.
*
* @date Jan 2024
* @author Barrett Edwards <code@jrlabs.io>
*
*/
/* INCLUDES ==================================================================*/
/* gettid()
*/
#define _GNU_SOURCE
/* exit()
*/
//#include <stdlib.h>
/* errno
*/
#include <errno.h>
/* printf()
*/
#include <stdio.h>
/* free()
*/
#include <stdlib.h>
/* memset()
* memcpy()
*/
#include <string.h>
/* pthread_t
* pthread_create()
* pthread_join()
* pthread_getthreadid_np()
*/
#include <pthread.h>
/* __u32
*/
#include <linux/types.h>
/* sem_t
* sem_init()
* sem_timedwait()
*/
#include <semaphore.h>
/* autl_prnt_buf()
*/
#include <arrayutils.h>
#include <timeutils.h>
#include <ptrqueue.h>
#include "main.h"
/* MACROS ====================================================================*/
//#define MCTP_VERBOSE
#ifdef MCTP_VERBOSE
#define INIT unsigned step = 0;
#define ENTER if (m->verbose & MCTP_VERBOSE_THREADS) printf("%d:%s Enter\n", gettid(), __FUNCTION__);
#define STEP step++; if (m->verbose & MCTP_VERBOSE_STEPS) printf("%d:%s STEP: %u\n", gettid(), __FUNCTION__, step);
#define HEX32(k, i) if (m->verbose & MCTP_VERBOSE_STEPS) printf("%d:%s STEP: %u %s: 0x%x\n", gettid(), __FUNCTION__, step, k, i);
#define INT32(k, i) if (m->verbose & MCTP_VERBOSE_STEPS) printf("%d:%s STEP: %u %s: %d\n", gettid(), __FUNCTION__, step, k, i);
#define ERR32(k, i) if (m->verbose & MCTP_VERBOSE_ERROR) printf("%d:%s STEP: %u ERR: %s: %d\n", gettid(), __FUNCTION__, step, k, i);
#define EXIT(rc) if (m->verbose & MCTP_VERBOSE_THREADS) printf("%d:%s Exit: %d\n", gettid(), __FUNCTION__,rc);
#else
#define INIT
#define ENTER
#define STEP
#define HEX32(k, i)
#define INT32(k, i)
#define ERR32(k, i)
#define EXIT(rc)
#endif
/* ENUMERATIONS ==============================================================*/
/* STRUCTS ===================================================================*/
/* GLOBAL VARIABLES ==========================================================*/
/**
* String representation of MCTP Threads Run Mode (RM)
*/
const char *STR_MCRM[] = {
"Server", // MCRM_SERVER = 0,
"Client" // MCRM_CLIENT = 1
};
/* String representation of MCTP Message Type Codes (MT)
*
* See DSP0239 v1.9.0 Table 1.
*/
const char *STR_MCMT[] = {
"CONTROL", // MCMT_CONTROL = 0x00,
"PLDM", // MCMT_PLDM = 0x01,
"NCSI", // MCMT_NCSI = 0x02,
"ETHERNET", // MCMT_ETHERNET = 0x03,
"NVMEMI", // MCMT_NVMEMI = 0x04,
"SPDM", // MCMT_SPDM = 0x05,
"SECURE", // MCMT_SECURE = 0x06,
"CXLFMAPI", // MCMT_CXLFMAPI = 0x07,
"CXLCCI ", // MCMT_CXLCCI = 0x08,
"VDM_PCI", // MCMT_VDM_PCI = 0x7E,
"VDM_IANA" // MCMT_VDM_IANA = 0x7F
};
/* PROTOTYPES ================================================================*/
/* FUNCTIONS =================================================================*/
/**
* Convenience function to fill MCTP Header fields
*
* @param mm struct mctp_msg* to fill
* @param dest Destination EID
* @param src Source EID
* @param owner Bit indicating if SRC is the owner
* @param tag Tag ID to track multiple outstanding commands
*/
void mctp_fill_msg_hdr(
struct mctp_msg *mm,
__u8 dest,
__u8 src,
__u8 owner,
__u8 tag)
{
mm->dst = dest;
mm->src = src;
mm->owner = owner;
mm->tag = tag;
}
/**
* Free memory allocated by init function
*
* STEPS
* 1: Verify input
* 2: Close socket connection
* 3: Destroy Mutexes
* 4: Free queues
* 5: Free mctp struct memory
*/
int mctp_free(struct mctp *m)
{
INIT
struct mctp_version *head, *curr, *next;
int rv;
ENTER
// Initialize variables
rv = 1;
STEP // 1: Verify input
if (m == NULL) {
errno = EINVAL;
rv = -1;
goto end;
}
STEP // 2: Close socket connection
if (m->conn != m->sock)
close(m->conn);
close(m->sock);
STEP // 3: Destroy Mutexes
pthread_mutex_destroy(&m->mtx);
pthread_cond_destroy(&m->cond);
pthread_mutex_destroy(&m->tags_mtx);
STEP // 4: Free queues
pq_free(m->rpq);
pq_free(m->rmq);
pq_free(m->tpq);
pq_free(m->tmq);
pq_free(m->taq);
pq_free(m->acq);
pq_free(m->pkts);
pq_free(m->msgs);
pq_free(m->actions);
STEP // 5 Free MCTP Versions array
head = m->mctp_versions;
while (head != NULL)
{
curr = head;
head = head->next_type;
while (curr != NULL)
{
next = curr->next_entry;
free(curr);
curr = next;
}
}
STEP // 6: Free mctp struct memory
free(m);
rv = 0;
end:
EXIT(rv);
return rv;
}
/**
* Get the verbosity bit mask
*/
__u32 mctp_get_verbosity(struct mctp *m)
{
return m->verbose;
}
/**
* Initialize an mctp object
*
* STEPS
* 1: Allocate memory for mctp struct
* 2: Initialize message handlers
* 3: Initialize message_handler thread
* 4: Initialize UUID
* 5: Initialize mutex variables
*/
struct mctp *mctp_init()
{
struct mctp *m;
// STEP 1: Allocate memory for mctp struct
m = (struct mctp*) calloc (1, sizeof(struct mctp));
if (m == NULL)
{
errno = EFAULT;
return NULL;
}
// STEP 2: Initialize message handlers
m->handlers[MCMT_CONTROL] = mctp_ctrl_handler;
// STEP 3: Initialize message_handler thread
m->fn_sr = mctp_socket_reader;
m->fn_pr = mctp_packet_reader;
m->fn_mh = mctp_message_handler;
m->fn_pw = mctp_packet_writer;
m->fn_sw = mctp_socket_writer;
m->fn_st = mctp_submission_thread;
m->fn_ct = mctp_completion_thread;
// STEP 4: Initialize UUID
uuid_generate(m->uuid);
memcpy(m->state.uuid, m->uuid, MCLN_UUID);
// STEP 5: Initialize mutex variables
pthread_mutex_init(&m->mtx, NULL);
pthread_cond_init(&m->cond, NULL);
pthread_mutex_init(&m->tags_mtx, NULL);
// STEP 6: Initialize mctp_versions array
m->mctp_versions = NULL;
mctp_set_version(m, MCMT_BASE, 0xF1,0xF3,0xF1,0x00);
mctp_set_version(m, MCMT_CONTROL, 0xF1,0xF3,0xF1,0x00);
return m;
}
/**
* Determine the number of packets needed for this MCTP Message
*
* @return the number of packets, 0 if error
*/
int mctp_pkt_count(struct mctp_msg *mm)
{
int rv;
// Initialize variables
rv = 0;
switch (mm->type)
{
case MCMT_CONTROL: rv = 1; break; // All MCTP control messages are 1 packet long
case MCMT_PLDM:
case MCMT_NCSI:
case MCMT_ETHERNET:
case MCMT_NVMEMI:
case MCMT_SPDM:
case MCMT_SECURE:
case MCMT_CXLFMAPI:
case MCMT_CSE:
case MCMT_CXLCCI:
case MCMT_VDM_PCI:
case MCMT_VDM_IANA:
{
// Compute the number of MCLN_BTU sized packets needed
rv = mm->len / MCLN_BTU;
if ((mm->len % MCLN_BTU) > 0 )
rv++;
}
break;
default: break;
}
return rv;
}
/**
* Print an MCTP Transport Header
*/
void mctp_prnt_hdr(struct mctp_hdr *mh)
{
if (mh == NULL)
return;
printf("MCTP Header:\n");
printf("Header version: 0x%x\n", mh->ver);
printf("Destination EID: 0x%02x\n", mh->dest);
printf("Source EID: 0x%02x\n", mh->src);
printf("Start of Message: %d\n", mh->som);
printf("End of Message: %d\n", mh->eom);
printf("Packet Sequence #: 0x%x\n", mh->seq);
printf("Tag Owner: %d\n", mh->owner);
printf("Tag: 0x%x\n", mh->tag);
}
/**
* Print MCTP Pkt
*/
void mctp_prnt_pkt(struct mctp_pkt *mp)
{
if (mp == NULL)
return;
// Print the MCTP Transport Header
mctp_prnt_hdr(&mp->hdr);
// Print the payload
autl_prnt_buf(mp, sizeof(struct mctp_pkt), 4, 1);
}
/**
* Print MCTP Packet Wrapper
*/
void mctp_prnt_pkt_wrapper(struct mctp_pkt_wrapper *pw)
{
if (pw == NULL)
return;
printf("MCTP Packet Wrapper:\n");
timespec_print(&pw->ts);
printf("Next: %p\n", pw->next);
mctp_prnt_pkt(&pw->pkt);
}
/*
* Print an MCTP Message Type
*/
void mctp_prnt_type(struct mctp_type *mt)
{
printf("MCTP Type:\n");
printf("Integrity Check: %d\n", mt->IC);
printf("Message Type: 0x%02x %s\n", mt->type, mcmt(mt->type));
}
/**
* Print the current MCTP Endpoint Configuration
*/
void mctp_prnt_state(struct mctp_state *ms)
{
char buf[37];
// Convert UUID into String for printing
uuid_unparse(ms->uuid, buf);
printf("MCTP State:\n");
printf("Endpoint ID: %02x\n", ms->eid);
printf("Bus Owner EID: %02x\n", ms->bus_owner_eid);
printf("Verbose Flags: %08x\n", ms->verbose);
printf("UUID: %s\n", buf);
}
/**
* Print MCTP Message
*/
void mctp_prnt_msg(struct mctp_msg *mm)
{
if (mm == NULL)
return;
printf("MCTP Message:\n");
printf("Destination EID: 0x%02x\n", mm->dst);
printf("Source EID: 0x%02x\n", mm->src);
printf("Type: 0x%02x - %s\n", mm->type, mcmt(mm->type));
printf("Tag Owner: %d\n", mm->owner);
printf("Tag: %d\n", mm->tag);
printf("Payload Len: %d\n", mm->len);
printf("Payload:\n");
// Print the payload in bytes
autl_prnt_buf(mm->payload, mm->len, 4, 1);
}
/**
* Retire an MCTP action
*
* Checks in the mctp_msg and mctp_action to the central free pools
* @param m struct mctp*
* @param a struct mctp_action*
*/
void mctp_retire(struct mctp* m, struct mctp_action *a)
{
struct mctp_pkt_wrapper *pw, *next;
// Check in msg
if (a->req != NULL)
pq_push(m->msgs, a->req);
if (a->rsp != NULL)
pq_push(m->msgs, a->rsp);
if (a->pw != NULL)
{
pw = a->pw;
do
{
next = pw->next;
pw->next = NULL;
pq_push(m->pkts, pw);
pw = next;
} while (pw != NULL);
}
// Clear action
memset(a, 0, sizeof(struct mctp_action));
// Check in action
pq_push(m->actions, a);
}
/**
* Start the threads
*
* @return 0 on success
* -1 on socket create failure (both)
* -2 on socket bind failure (server)
* -3 on socket connect failure (client)
* 1 on pthread_create() failure (both)
* 2 on connection_thread start failure (both)
*
* STEPS
* 1: Store parameters in mctp object
* 2: Create socket
* 3: Set parameters for server socket
* 4: Configure socket
* 5: Start connection thread
*/
int mctp_run(struct mctp *m, int port, __u32 address, int mode, int use_threads, int dontblock)
{
INIT
int rv;
sem_t sem;
struct timespec ts, delta;
ENTER
// Initialize variables
rv = -1;
delta.tv_sec = 1;
delta.tv_nsec = 0;
STEP // 1: Store parameters in mctp object
m->port = port;
m->mode = mode;
m->use_threads = use_threads;
m->wait = use_threads;
STEP // 2: Create socket
m->sock = socket(AF_INET, SOCK_STREAM, 0);
if ( m->sock < 0 )
{
ERR32("Could not create socket. rv:", m->sock);
rv = -1;
goto close;
}
STEP // 3: Set parameters for server socket
memset( &m->sa_server, 0, sizeof(struct sockaddr_in));
m->sa_server.sin_family = AF_INET;
m->sa_server.sin_port = htons(port);
m->sa_server.sin_addr.s_addr = address;
STEP // 4: Configure Socket
if ( mode == MCRM_SERVER )
{
// Bind to socket
rv = bind(m->sock, (struct sockaddr *) &m->sa_server, sizeof(struct sockaddr_in));
if ( rv < 0 )
{
ERR32("Could not bind socket. rv", rv);
rv = -2;
goto close;
}
// Listen on socket
listen(m->sock,5);
}
else {
// Connect to the server as a client
rv = connect(m->sock, (struct sockaddr *) &m->sa_server, sizeof(struct sockaddr_in));
if ( rv < 0 )
{
ERR32("Socket connect failed. rv:", rv);
rv = -3;
goto close;
}
m->conn = m->sock;
}
// Set struct mctp pointer in Connection Handler object
m->ch.m = m;
m->ch.dontblock = dontblock;
m->ch.sem = NULL;
STEP // 5: Start Connection Handler Thread
// If the user specified dontblock, then start the connection handler thread function as a independent thread and return
if (dontblock)
{
// Initialize sempahore
sem_init(&sem, 0, 0);
m->ch.sem = &sem;
// Start thread
rv = pthread_create( &m->pt_ch, NULL, mctp_connection_handler, (void*) &m->ch);
if ( rv != 0 )
{
ERR32("Could not create Connection Handler Thread", rv);
rv = 1;
goto close;
}
// Compute timeout to wait for semaphore
timespec_get(&ts, CLOCK_MONOTONIC);
timespec_add(&ts, &delta, &ts);
// Pend on a semaphore until all the threads are running
rv = sem_timedwait(&sem, &ts);
sem_destroy(&sem);
if (rv != 0)
{
ERR32("Threads failed to start", rv);
rv = 2;
goto close;
}
}
else
{
mctp_connection_handler(&m->ch);
}
rv = 0;
goto end;
close:
close(m->sock);
end:
EXIT(rv)
return rv;
}
/**
* Specify the function to call for a MCTP Message type
*/
void mctp_set_handler (
struct mctp *m,
int type,
int (*func)(struct mctp *m, struct mctp_action *ma))
{
if (type < MCMT_MAX)
m->handlers[type] = func;
}
/**
* Set the function to be called as the message handler thread
*/
void mctp_set_mh(struct mctp *m, void *(*fn)(void*arg))
{
m->fn_mh = fn;
}
/**
* Set the verbosity bit mask
*/
void mctp_set_verbosity(struct mctp *m, __u32 level)
{
m->verbose = level;
m->state.verbose = level;
}
/**
* Method to request mctp threads to stop
*
* This is called by the thread functions to say they exited abnormally
* This is called when a thread has experienced an error and needs to tell the main thread to stop all the other threads
* Pend upon the mutex which will unlock when the main thread calls pthread_cond_wait()
* When the lock is obtained, tell the main thread to stop all the threads by setting a bit,
* then issue signal, then unlock, then exit
*/
void mctp_request_stop(struct mctp *m)
{
pthread_mutex_lock(&m->mtx);
{
m->stop_threads = 2;
pthread_cond_signal(&m->cond);
}
pthread_mutex_unlock(&m->mtx);
}
/**
* Instruct all threads to stop, wait, join
*
* This can only be called by an external thread, not by any of the child mctp threads
*
* @detail Pend upon the mutex which will unlock when the main thread calls pthread_cond_wait()
* When the lock is obtained, tell the main thread to stop all the threads by setting a bit,
* then issue signal, then unlock, then exit
*/
int mctp_stop(struct mctp *m)
{
pthread_mutex_lock(&m->mtx);
{
// If we get the mutex and the threads haven't started,
// then the connection thread has pended on the accept() and won't
// return, so cancel the thread
if ( ( m->use_threads != 0 ) && ( m->all_threads_started == 0 ) ) {
pthread_cancel(m->pt_ch);
close(m->sock);
}
else {
m->stop_threads = 1;
pthread_cond_signal(&m->cond);
}
}
pthread_mutex_unlock(&m->mtx);
// Join with the connection handler thread before exiting function
pthread_join(m->pt_ch, NULL);
return 0;
}
/**
* Submit an object for transmission
*
* @param m struct mctp*
* @param type mctp message type
* @param obj Pointer to serialized data buffer to send
* @param len Length of object in bytes
* @param retry Number of attempts to send the object. -1=forever, -2=default
* @param user_data void* to a user data object to keep with the action until completion
* @param fn_submitted Function to call when action is submitted to tmq
* @param fn_completed Function to call when response to action is received
* @param fn_failed Function to call when retry attempts have elapsed
* @return struct mctp_action* of the action submitted. NULL on error and sets errno
*
* STEPS
* 1: Validate inputs
* 2. Prepare message
* 3. Prepare action
* 4. Submit action
*/
struct mctp_action *mctp_submit(
struct mctp *m,
int type,
void *obj,
size_t len,
int retry,
struct timespec *delta,
void *user_data,
void (*fn_submitted)(struct mctp *m, struct mctp_action *a),
void (*fn_completed)(struct mctp *m, struct mctp_action *a),
void (*fn_failed)(struct mctp *m, struct mctp_action *a)
)
{
INIT
struct mctp_action *ma;
struct mctp_msg *mm;
sem_t sem;
int rv;
ENTER
// Initialize varialbes
rv = 1;
ma = NULL;
STEP // 1: Validate inputs
if (m == NULL)
goto end;
if (obj == NULL)
goto end;
if (len == 0)
goto end;
STEP // 2. Prepare Message
// Check out msg
mm = pq_pop(m->msgs, 1);
if (mm == NULL)
goto end;
// Fill out msg
mm->owner = 1;
mm->type = type;
mm->len = len;
memcpy(&mm->payload, obj, len);
STEP // 3. Prepare Action
// Check out action
ma = pq_pop(m->actions, 1);
if (ma == NULL)
goto end;
// Fill out action
memset(ma, 0, sizeof(struct mctp_action));
ma->valid = 1;
ma->req = mm;
if (retry < -1)
ma->max = MCTP_ACTION_DEFAULT_RETRY_NUM;
else
ma->max = retry;
timespec_get(&ma->created, CLOCK_MONOTONIC);
ma->user_data = user_data;
ma->fn_submitted = fn_submitted;
ma->fn_completed = fn_completed;
ma->fn_failed = fn_failed;
// Set mctp_action.sem to NULL if we are not going to pend on the sempahore
if (delta == NULL)
ma->sem = NULL;
else
{
// Initialize Semaphore
sem_init(&sem, 0, 0);
ma->sem = &sem;
}
STEP // 4. Submit action
rv = pq_push(m->taq, ma);
if (rv != 0)
{
ma = NULL;
errno = EBUSY;
goto end;
}
STEP // 5: Pend on semaphore
if (delta != NULL)
{
// Compute absolute timeout
timespec_get(&ma->timeout, CLOCK_MONOTONIC);
timespec_add(&ma->timeout, delta, &ma->timeout);
// Pend on semaphore
rv = sem_timedwait(&sem, &ma->timeout);
// Clean up the one time use semaphore
sem_destroy(&sem);
// Check response. If the semaphore timedpout, then return NULL to caller
if (rv != 0)
ma = NULL;
}
end:
EXIT(rv)
return ma;
}
/* Functions to return a string representation of an object*/
const char *mcmt(unsigned u)
{
int rv;
switch (u)
{
case MCMT_CONTROL: rv = 0; break; // 0x00
case MCMT_PLDM: rv = 1; break; // 0x01
case MCMT_NCSI: rv = 2; break; // 0x02
case MCMT_ETHERNET: rv = 3; break; // 0x03
case MCMT_NVMEMI: rv = 4; break; // 0x04
case MCMT_SPDM: rv = 5; break; // 0x05
case MCMT_SECURE: rv = 6; break; // 0x06
case MCMT_CXLFMAPI: rv = 7; break; // 0x07
case MCMT_CXLCCI: rv = 8; break; // 0x08
case MCMT_VDM_PCI: rv = 9; break; // 0x7E
case MCMT_VDM_IANA: rv = 10; break; // 0x7F
default: return NULL;
}
return STR_MCMT[rv];
}
const char *mcrm(unsigned u)
{
if (u >= MCRM_MAX)
return NULL;
return STR_MCRM[u];
}