CSE-release/fmapi_isc_handler.c

542 lines
13 KiB
C

/* SPDX-License-Identifier: Apache-2.0 */
/**
* @file fmapi_isc_handler.c
*
* @brief Code file for methods to respond to FM API commands
*
* @copyright Copyright (C) 2024 Jackrabbit Founders LLC. All rights reserved.
*
* @date Jan 2024
* @author Barrett Edwards <code@jrlabs.io>
*
*/
/* INCLUDES ==================================================================*/
/* gettid()
*/
#define _GNU_SOURCE
#include <unistd.h>
/* printf()
*/
#include <stdio.h>
/* memset()
*/
#include <string.h>
/* struct timespec
* timespec_get()
*
*/
#include <time.h>
/* autl_prnt_buf()
*/
#include <arrayutils.h>
/* mctp_init()
* mctp_set_mh()
* mctp_run()
*/
#include <mctp.h>
#include <ptrqueue.h>
#include <timeutils.h>
#include "signals.h"
#include "options.h"
#include "state.h"
#include <fmapi.h>
#include "fmapi_handler.h"
/* MACROS ====================================================================*/
#ifdef CSE_VERBOSE
#define INIT unsigned step = 0;
#define ENTER if (opts[CLOP_VERBOSITY].u64 & CLVB_CALLSTACK) printf("%d:%s Enter\n", gettid(), __FUNCTION__);
#define STEP step++; if (opts[CLOP_VERBOSITY].u64 & CLVB_STEPS) printf("%d:%s STEP: %u\n", gettid(), __FUNCTION__, step);
#define HEX32(m, i) if (opts[CLOP_VERBOSITY].u64 & CLVB_STEPS) printf("%d:%s STEP: %u %s: 0x%x\n", gettid(), __FUNCTION__, step, m, i);
#define INT32(m, i) if (opts[CLOP_VERBOSITY].u64 & CLVB_STEPS) printf("%d:%s STEP: %u %s: %d\n", gettid(), __FUNCTION__, step, m, i);
#define EXIT(rc) if (opts[CLOP_VERBOSITY].u64 & CLVB_CALLSTACK) printf("%d:%s Exit: %d\n", gettid(), __FUNCTION__,rc);
#else
#define ENTER
#define EXIT(rc)
#define STEP
#define HEX32(m, i)
#define INT32(m, i)
#define INIT
#endif // CSE_VERBOSE
#define IFV(u) if (opts[CLOP_VERBOSITY].u64 & u)
#define ISO_TIME_BUF_LEN 32
/* ENUMERATIONS ==============================================================*/
/* STRUCTS ===================================================================*/
/* PROTOTYPES ================================================================*/
/* GLOBAL VARIABLES ==========================================================*/
/* FUNCTIONS =================================================================*/
/**
* Handler for FM API ISC Background Operation Status Opcode (0002h)
*
* @param m struct mctp*
* @param mm struct mctp_msg*
* @return 0 upon success, 1 otherwise
*
* STEPS
* 1: Initialize variables
* 2: Checkout Response mctp_msg buffer
* 3: Fill Response MCTP Header
* 4: Set buffer pointers
* 5: Deserialize Request Header
* 6: Deserialize Request Object
* 7: Extract parameters
* 8: Obtain lock on switch state
* 9: Validate Inputs
* 10: Perform Action
* 11: Prepare Response Object
* 12: Serialize Response Object
* 13: Set return code
* 14: Release lock on switch state
* 15: Fill Response Header
* 16: Serialize Header
* 17: Push Response mctp_msg onto Transmit Message Queue
* 18: Checkin mctp_msgs
*/
int fmop_isc_bos(struct mctp *m, struct mctp_action *ma)
{
INIT
char now[ISO_TIME_BUF_LEN];
struct fmapi_msg req, rsp;
unsigned rc;
int rv, len;
ENTER
STEP // 1: Initialize variables
rv = 1;
len = 0;
rc = FMRC_INVALID_INPUT;
isotime(now, ISO_TIME_BUF_LEN);
STEP // 2: Get response mctp_msg buffer
ma->rsp = pq_pop(m->msgs, 1);
if (ma->rsp == NULL)
goto end;
STEP // 3: Fill Response MCTP Header: dst, src, owner, tag, and type
mctp_fill_msg_hdr(ma->rsp, ma->req->src, m->state.eid, 0, ma->req->tag);
ma->rsp->type = ma->req->type;
// 4: Set buffer pointers
req.buf = (struct fmapi_buf*) ma->req->payload;
rsp.buf = (struct fmapi_buf*) ma->rsp->payload;
STEP // 5: Deserialize Request Header
if ( fmapi_deserialize(&req.hdr, req.buf->hdr, FMOB_HDR, NULL) <= 0 )
goto end;
STEP // 6: Deserialize Request Object
if ( fmapi_deserialize(&req.obj, req.buf->payload, fmapi_fmob_req(req.hdr.opcode), NULL) < 0 )
goto end;
STEP // 7: Extract parameters
IFV(CLVB_COMMANDS) printf("%s CMD: FM API ISC Background Operation Status\n", now);
STEP // 8: Obtain lock on switch state
pthread_mutex_lock(&cxl_state->mtx);
STEP // 9: Validate Inputs
STEP // 10: Perform Action
STEP // 11: Prepare Response Object
rsp.obj.isc_bos.running = cxl_state->bos_running;
rsp.obj.isc_bos.pcnt = cxl_state->bos_pcnt;
rsp.obj.isc_bos.opcode = cxl_state->bos_opcode;
rsp.obj.isc_bos.rc = cxl_state->bos_rc;
rsp.obj.isc_bos.ext = cxl_state->bos_ext;
STEP // 12: Serialize Response Object
len = fmapi_serialize(rsp.buf->payload, &rsp.obj, fmapi_fmob_rsp(req.hdr.opcode));
STEP // 13: Set return code
rc = FMRC_SUCCESS;
//send:
STEP // 14: Release lock on switch state
pthread_mutex_unlock(&cxl_state->mtx);
if (len < 0)
goto end;
STEP // 15: Fill Response Header
ma->rsp->len = fmapi_fill_hdr(&rsp.hdr, FMMT_RESP, req.hdr.tag, req.hdr.opcode, 0, len, rc, 0);
STEP // 16: Serialize Header
fmapi_serialize(rsp.buf->hdr, &rsp.hdr, FMOB_HDR);
STEP // 17: Push mctp_action onto queue
pq_push(m->tmq, ma);
rv = 0;
end:
EXIT(rc)
return rv;
}
/**
* Handler for FM API ISC Identify Opcode (0001h)
*
* @param m struct mctp*
* @param mm struct mctp_msg*
* @return 0 upon success, 1 otherwise
*
* STEPS
* 1: Initialize variables
* 2: Checkout Response mctp_msg buffer
* 3: Fill Response MCTP Header
* 4: Set buffer pointers
* 5: Deserialize Request Header
* 6: Deserialize Request Object
* 7: Extract parameters
* 8: Obtain lock on switch state
* 9: Validate Inputs
* 10: Perform Action
* 11: Prepare Response Object
* 12: Serialize Response Object
* 13: Set return code
* 14: Release lock on switch state
* 15: Fill Response Header
* 16: Serialize Header
* 17: Push Response mctp_msg onto Transmit Message Queue
* 18: Checkin mctp_msgs
*/
int fmop_isc_id(struct mctp *m, struct mctp_action *ma)
{
INIT
char now[ISO_TIME_BUF_LEN];
struct fmapi_msg req, rsp;
unsigned rc;
int rv, len;
ENTER
STEP // 1: Initialize variables
rv = 1;
len = 0;
rc = FMRC_INVALID_INPUT;
isotime(now, ISO_TIME_BUF_LEN);
STEP // 2: Get response mctp_msg buffer
ma->rsp = pq_pop(m->msgs, 1);
if (ma->rsp == NULL)
goto end;
STEP // 3: Fill Response MCTP Header: dst, src, owner, tag, and type
mctp_fill_msg_hdr(ma->rsp, ma->req->src, m->state.eid, 0, ma->req->tag);
ma->rsp->type = ma->req->type;
STEP // 4: Set buffer pointers
req.buf = (struct fmapi_buf*) ma->req->payload;
rsp.buf = (struct fmapi_buf*) ma->rsp->payload;
STEP // 5: Deserialize Request Header
if ( fmapi_deserialize(&req.hdr, req.buf->hdr, FMOB_HDR, NULL) <= 0 )
goto end;
STEP // 6: Deserialize Request Object
if ( fmapi_deserialize(&req.obj, req.buf->payload, fmapi_fmob_req(req.hdr.opcode), NULL) < 0 )
goto end;
STEP // 7: Extract parameters
IFV(CLVB_COMMANDS) printf("%s CMD: FM API ISC Identify\n", now);
STEP // 8: Obtain lock on switch state
pthread_mutex_lock(&cxl_state->mtx);
STEP // 9: Validate Inputs
STEP // 10: Perform Action
STEP // 11: Prepare Response Object
rsp.obj.isc_id_rsp.vid = cxl_state->vid;
rsp.obj.isc_id_rsp.did = cxl_state->did;
rsp.obj.isc_id_rsp.svid = cxl_state->svid;
rsp.obj.isc_id_rsp.ssid = cxl_state->ssid;
rsp.obj.isc_id_rsp.sn = cxl_state->sn;
rsp.obj.isc_id_rsp.size = cxl_state->max_msg_size_n;
STEP // 12: Serialize Response Object
len = fmapi_serialize(rsp.buf->payload, &rsp.obj, fmapi_fmob_rsp(req.hdr.opcode));
STEP // 13: Set return code
rc = FMRC_SUCCESS;
//send:
STEP // 14: Release lock on switch state
pthread_mutex_unlock(&cxl_state->mtx);
if (len < 0)
goto end;
STEP // 15: Fill Response Header
ma->rsp->len = fmapi_fill_hdr(&rsp.hdr, FMMT_RESP, req.hdr.tag, req.hdr.opcode, 0, len, rc, 0);
STEP // 16: Serialize Header
fmapi_serialize(rsp.buf->hdr, &rsp.hdr, FMOB_HDR);
STEP // 17: Push mctp_action onto queue
pq_push(m->tmq, ma);
rv = 0;
end:
EXIT(rc)
return rv;
}
/**
* Handler for FM API ISC Get Response Message Limit Opcode (0003h)
*
* @param m struct mctp*
* @param mm struct mctp_msg*
* @return 0 upon success, 1 otherwise
*
* STEPS
* 1: Initialize variables
* 2: Checkout Response mctp_msg buffer
* 3: Fill Response MCTP Header
* 4: Set buffer pointers
* 5: Deserialize Request Header
* 6: Deserialize Request Object
* 7: Extract parameters
* 8: Obtain lock on switch state
* 9: Validate Inputs
* 10: Perform Action
* 11: Prepare Response Object
* 12: Serialize Response Object
* 13: Set return code
* 14: Release lock on switch state
* 15: Fill Response Header
* 16: Serialize Header
* 17: Push Response mctp_msg onto Transmit Message Queue
* 18: Checkin mctp_msgs
*/
int fmop_isc_msg_limit_get(struct mctp *m, struct mctp_action *ma)
{
INIT
char now[ISO_TIME_BUF_LEN];
struct fmapi_msg req, rsp;
unsigned rc;
int rv, len;
ENTER
STEP // 1: Initialize variables
rv = 1;
len = 0;
rc = FMRC_INVALID_INPUT;
isotime(now, ISO_TIME_BUF_LEN);
STEP // 2: Get response mctp_msg buffer
ma->rsp = pq_pop(m->msgs, 1);
if (ma->rsp == NULL)
goto end;
STEP // 3: Fill Response MCTP Header: dst, src, owner, tag, and type
mctp_fill_msg_hdr(ma->rsp, ma->req->src, m->state.eid, 0, ma->req->tag);
ma->rsp->type = ma->req->type;
// 4: Set buffer pointers
req.buf = (struct fmapi_buf*) ma->req->payload;
rsp.buf = (struct fmapi_buf*) ma->rsp->payload;
STEP // 5: Deserialize Request Header
if ( fmapi_deserialize(&req.hdr, req.buf->hdr, FMOB_HDR, NULL) <= 0 )
goto end;
STEP // 6: Deserialize Request Object
if ( fmapi_deserialize(&req.obj, req.buf->payload, fmapi_fmob_req(req.hdr.opcode), NULL) < 0 )
goto end;
STEP // 7: Extract parameters
IFV(CLVB_COMMANDS) printf("%s CMD: FM API ISC Get Response Message Limit\n", now);
STEP // 8: Obtain lock on switch state
pthread_mutex_lock(&cxl_state->mtx);
STEP // 9: Validate Inputs
STEP // 10: Perform Action
STEP // 11: Prepare Response Object
rsp.obj.isc_msg_limit.limit = cxl_state->msg_rsp_limit_n;
STEP // 12: Serialize Response Object
len = fmapi_serialize(rsp.buf->payload, &rsp.obj, fmapi_fmob_rsp(req.hdr.opcode));
STEP // 13: Set return code
rc = FMRC_SUCCESS;
//send:
STEP // 14: Release lock on switch state
pthread_mutex_unlock(&cxl_state->mtx);
if (len < 0)
goto end;
STEP // 15: Fill Response Header
ma->rsp->len = fmapi_fill_hdr(&rsp.hdr, FMMT_RESP, req.hdr.tag, req.hdr.opcode, 0, len, rc, 0);
STEP // 16: Serialize Header
fmapi_serialize(rsp.buf->hdr, &rsp.hdr, FMOB_HDR);
STEP // 17: Push mctp_action onto queue
pq_push(m->tmq, ma);
rv = 0;
end:
EXIT(rc)
return rv;
}
/**
* Handler for FM API ISC Set Response Message Limit Opcode (0004h)
*
* @param m struct mctp*
* @param mm struct mctp_msg*
* @return 0 upon success, 1 otherwise
*
* STEPS
* 1: Initialize variables
* 2: Checkout Response mctp_msg buffer
* 3: Fill Response MCTP Header
* 4: Set buffer pointers
* 5: Deserialize Request Header
* 6: Deserialize Request Object
* 7: Extract parameters
* 8: Obtain lock on switch state
* 9: Validate Inputs
* 10: Perform Action
* 11: Prepare Response Object
* 12: Serialize Response Object
* 13: Set return code
* 14: Release lock on switch state
* 15: Fill Response Header
* 16: Serialize Header
* 17: Push Response mctp_msg onto Transmit Message Queue
* 18: Checkin mctp_msgs
*/
int fmop_isc_msg_limit_set(struct mctp *m, struct mctp_action *ma)
{
INIT
char now[ISO_TIME_BUF_LEN];
struct fmapi_msg req, rsp;
unsigned rc;
int rv, len;
ENTER
STEP // 1: Initialize variables
rv = 1;
len = 0;
rc = FMRC_INVALID_INPUT;
isotime(now, ISO_TIME_BUF_LEN);
STEP // 2: Get response mctp_msg buffer
ma->rsp = pq_pop(m->msgs, 1);
if (ma->rsp == NULL)
goto end;
STEP // 3: Fill Response MCTP Header: dst, src, owner, tag, and type
mctp_fill_msg_hdr(ma->rsp, ma->req->src, m->state.eid, 0, ma->req->tag);
ma->rsp->type = ma->req->type;
// 4: Set buffer pointers
req.buf = (struct fmapi_buf*) ma->req->payload;
rsp.buf = (struct fmapi_buf*) ma->rsp->payload;
STEP // 5: Deserialize Request Header
if ( fmapi_deserialize(&req.hdr, req.buf->hdr, FMOB_HDR, NULL) <= 0 )
goto end;
STEP // 6: Deserialize Request Object
if ( fmapi_deserialize(&req.obj, req.buf->payload, fmapi_fmob_req(req.hdr.opcode), NULL) < 0 )
goto end;
STEP // 7: Extract parameters
IFV(CLVB_COMMANDS) printf("%s CMD: FM API ISC Set Response Message Limit\n", now);
STEP // 8: Obtain lock on switch state
pthread_mutex_lock(&cxl_state->mtx);
STEP // 9: Validate Inputs
if (req.obj.isc_msg_limit.limit < 8 || req.obj.isc_msg_limit.limit > 20)
{
IFV(CLVB_ERRORS) printf("%s ERR: Requested Message Response Limit outside allowed values. Requested: %d min: 8 max: 20\n", now, req.obj.isc_msg_limit.limit);
goto send;
}
STEP // 10: Perform Action
cxl_state->msg_rsp_limit_n = req.obj.isc_msg_limit.limit;
STEP // 11: Prepare Response Object
rsp.obj.isc_msg_limit.limit = cxl_state->msg_rsp_limit_n;
STEP // 12: Serialize Response Object
len = fmapi_serialize(rsp.buf->payload, &rsp.obj, fmapi_fmob_rsp(req.hdr.opcode));
if (len < 0)
goto end;
STEP // 13: Set return code
rc = FMRC_SUCCESS;
send:
STEP // 14: Release lock on switch state
pthread_mutex_unlock(&cxl_state->mtx);
STEP // 15: Fill Response Header
ma->rsp->len = fmapi_fill_hdr(&rsp.hdr, FMMT_RESP, req.hdr.tag, req.hdr.opcode, 0, len, rc, 0);
STEP // 16: Serialize Header
fmapi_serialize(rsp.buf->hdr, &rsp.hdr, FMOB_HDR);
STEP // 17: Push mctp_action onto queue
pq_push(m->tmq, ma);
rv = 0;
end:
EXIT(rc)
return rv;
}